Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Mustafa Odabaşoğlu, ${ }^{\text {a }}$ Orhan Büyükgüngör ${ }^{\text {b }}$ and Cliğdem Albayrak ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and
${ }^{\text {b }}$ Department of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.035$
$w R$ factor $=0.090$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

O,O-Bis(2-tert-butyl-4-methylphenyl) chlorothiophosphonate

The title compound, $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ClO}_{2} \mathrm{PS}$, displays distorted tetrahedral geometry around the P atom. The dihedral angle between the benzene rings is 43.7 (4) ${ }^{\circ}$. The aromatic rings have unusual endocyclic angles as a result of the steric effects of the tert-butyl groups. The molecules are linked by weak C$\mathrm{H} \cdots \pi$ interactions.

Comment

The conformational study of phosphoric acid esters has been mainly encouraged by the behaviour exhibited by these compounds in biological systems. In addition, owing to their biological activities and increasing industrial use in food manufacture and water treatment, and as antioxidants, anticorrosives, insecticides, detergents, oil additives, heavy metal ion-selective electrodes, ligands and resins, thiophosphorus compounds have attracted considerable attention (Bellamy \& Beecher, 1952; Schrader, 1954; Corbridge, 1956; Engelhard et al., 1967; Pastor et al., 1988; Odabaşoğlu \& Gümrükçüoğlu, 1993; Mastrantonio \& Della V'edova, 2001; Xu \& Katsu, 2001; Ibrahim et al., 2003). In the course of a systematic structural investigation of thiophosphorus compounds (Odabaşoğlu et al., 1999; Yılmaz et al., 1998; Büyükgüngör et al., 1995; Odabaşoğlu \& Gümrükçüoğlu, 1993; Odabaşoğlu et al., 1992), the structure of the title compound, (I), was determined.

(I)

An ORTEP-3 (Farrugia, 1997) view of the molecule of (I) and a packing diagram are shown in Figs. 1 and 2, respectively. Compound (I) exhibits no classical hydrogen bonds but does exhibit $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts: $\mathrm{H} 31 A \cdots \mathrm{Cg} 1=2.583 \AA$, $\mathrm{C} 31 \cdots \mathrm{Cg} 1=3.483(10) \AA$ and $\mathrm{C} 31-\mathrm{H} 31 A \cdots C g 1=156^{\circ}[C g 1$ is the centroid of the $\mathrm{C1}^{\mathrm{i}}-\mathrm{C} 6^{\mathrm{i}}$ ring; symmetry code: (i) $\frac{1}{2}+x$, $\left.\frac{1}{2}-y, \frac{1}{2}+z\right]$. The dihedral angle between the benzene rings in (I) is 43.7 (4) $)^{\circ}$. Selected bond distances and angles for (I) are given in Table 1. The endocyclic angles of the benzene rings are unusual; the diversity of the angles is probably due to steric effects of the tert-butyl groups.

The geometry about the P atom corresponds to a distorted tetrahedron, with the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles smaller than the ideal tetrahedral angle of 109.5°. The $\mathrm{P}=\mathrm{S}$ double bond distance is

Received 1 July 2005 Accepted 7 July 2005 Online 13 July 2005

Figure 1
A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

Figure 2
A view of the packing diagram for (I); $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are drawn as dashed lines.
in the range of bond lengths reported by Schomaker \& Stevenson (1941) for $\operatorname{PSF}_{3}(1.85 \AA)$ and $\mathrm{PSCl}_{3}(1.91 \AA)$. The $\mathrm{P}-\mathrm{O}$ bond lengths agree with that of the $\mathrm{P}-\mathrm{OH}$ bond of orthophosphoric acid (1.576 Å; International Tables for X-ray Crystallography, 1983, Vol. III) and also those of our previous studies (Yılmaz et al., 1998; Büyükgüngör et al., 1995; Odabaşoğlu et al., 1992).

Experimental

Compound (I) was prepared by the method described by Odabaşoğlu \& Gümrükçüoğlu (1993) as follows. In one preparative experiment, phosphorus thiochloride ($3.39 \mathrm{~g}, 0.02 \mathrm{~mol}$) was added to 2-tert-butyl-4-methylphenol ($8.2 \mathrm{~g}, 0.05 \mathrm{~mol}$) in a double-necked flask kept in an oil bath; the mixture was stirred continuously at 393 K and refluxed at 323 K for 24 h . The excess phosphorus thiochloride was removed under reduced pressure, giving a white solid residue. Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in n-hexane (yield 57%, m.p. 401 K). Analysis calculated: C 62.19, H 7.06\%; found: C 61.88 , H 6.96%.

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: by integration (X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.937, T_{\text {max }}=0.961$
14829 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.090$
$S=0.86$
4235 reflections
251 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0477 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

4235 independent reflections
2583 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.063$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-29 \rightarrow 29$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 14$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0048 (4)
Absolute structure: Flack (1983),
with 2019 Friedel pairs
Flack parameter $=0.39$ (16)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C1-C6	1.350 (10)	C21-C26	1.426 (9)
C1-C2	1.410 (11)	C22-C23	1.406 (11)
C1-O1	1.444 (9)	C23-C24	1.425 (11)
C2-C3	1.385 (11)	C24-C25	1.390 (11)
C3-C4	1.315 (12)	C25-C26	1.357 (10)
C4-C5	1.379 (12)	O1-P1	1.576 (6)
C5-C6	1.437 (10)	$\mathrm{O} 2-\mathrm{P} 1$	1.545 (6)
C21-C22	1.336 (11)	P1-Cl1	1.941 (4)
C21-O2	1.385 (9)	P1-S1	1.957 (4)
C6-C1-C2	125.0 (7)	C25-C24-C23	119.1 (7)
C6-C1-O1	116.0 (7)	C26-C25-C24	123.4 (7)
C2-C1-O1	118.3 (7)	C25-C26-C21	116.9 (7)
C4-C3-C2	125.7 (8)	$\mathrm{C} 21-\mathrm{O} 2-\mathrm{P} 1$	129.4 (5)
C3-C4-C5	115.8 (8)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	96.81 (8)
C4-C5-C6	125.1 (8)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{Cl} 1$	110.8 (3)
C1-C6-C5	113.0 (7)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{Cl} 1$	110.5 (3)
C22-C21-O2	120.6 (6)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{S} 1$	111.9 (3)
C22-C21-C26	121.1 (7)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{S} 1$	111.1 (3)
O2-C21-C26	118.3 (6)	$\mathrm{Cl} 1-\mathrm{P} 1-\mathrm{S} 1$	114.41 (4)
C22-C23-C24	116.7 (7)		

All H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ $\left[U_{\text {iso }}=1.2 U_{\text {eq }}(\right.$ parent atom $\left.)\right]$ for aromatic H atoms and $\mathrm{C}-\mathrm{H}=$ $0.96 \AA\left[U_{\text {iso }}=1.5 U_{\text {eq }}(\right.$ parent atom $\left.)\right]$ for methyl H atoms. The value of the Flack (1983) parameter indicates partial inversion twinning.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Bellamy, L. J. \& Beecher, L. (1952). J. Chem. Soc. pp. 475-483.
Büyükgüngör, O., Odabaşoğlu, M., Gümrükçüoğlu, İ. E., Eichhorn, E. \& Mattern, G. (1995). Acta Cryst. C51, 1207-1209.
Corbridge, D. E. C. (1956). J. Appl. Chem. pp. 456-465.
Engelhard, N., Prehal, K. \& Menner, M. (1967). Angew. Chem. Int. Ed. Engl. pp. 615-626.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

organic papers

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Ibrahim, M. M., Ichikawa, K. \& Shiro, M. (2003). Inorg. Chim. Acta, 353, 187196.

Mastrantonio, G. \& Della V'edova, C. O. (2001). J. Mol. Struct. 561, 161174.

Odabaşoğlu, M. \& Gümrükçüoğlu, İ. E. (1993). Doğa Turk. J. Chem. 17, 2932.

Odabaşoğlu, M., Gümrükçüoğlu, İ. E. \& Taprama, R. (1999). Phosphorus Sulfur Silicon, 152, 27-34.
Odabaşoğlu, M., Gümrükçüoğlu, İ. E., Yılmaz, V. T. \& Howie, R. A. (1992). Doğa Turk. J. Chem. 16, 293-298.

Pastor, S. D., Hyun, J. L., Odoriso, P. A. \& Rodebough, R. K. (1988). J. Am. Chem. Soc. 110, 6547-6555.
Schomaker, V. \& Stevenson, D. P. (1941). J. Am. Chem. Soc. 63, 29-32.
Schrader, G. (1954). Angew. Chem. 66, 265-266.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Xu, D. \& Katsu, T. (2001). Anal. Chim. Acta, 443, 235-240.
Yılmaz, V. T., Odabaşoğlu, M. \& Howie, R. A. (1998). Doğa Turk. J. Chem. 22, 409-413.

